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Abstract

Drug response prediction is an important problem in personalized cancer therapy. Among various newly developed models, significant
improvement in prediction performance has been reported using deep learning methods. However, systematic comparisons of deep
learning methods, especially of the transferability from preclinical models to clinical cohorts, are currently lacking. To provide a more
rigorous assessment, the performance of six representative deep learning methods for drug response prediction using nine evaluation
metrics, including the overall prediction accuracy, predictability of each drug, potential associated factors and transferability to clinical
cohorts, in multiple application scenarios was benchmarked. Most methods show promising prediction within cell line datasets, and
TGSA, with its lower time cost and better performance, is recommended. Although the performance metrics decrease when applying
models trained on cell lines to patients, a certain amount of power to distinguish clinical response on some drugs can be maintained
using CRDNN and TGSA. With these assessments, we provide a guidance for researchers to choose appropriate methods, as well as
insights into future directions for the development of more effective methods in clinical scenarios.
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Introduction
The goal of precision oncology is to deliver therapies tailored to
the molecular profile of an individual’s tumor. Due to the paucity
of clinical pharmacogenomics datasets, researchers often use pre-
clinical models, especially cancer cell lines, as a proxy. From the
great efforts made by the scientific community, large-scale phar-
macogenomics resources, including the Cancer Cell Line Encyclo-
pedia (CCLE) [1], Genomics of Drug Sensitivity in Cancer (GDSC)
[2] and Cancer Therapeutics Response Portal (CTRP) [3, 4], are
publicly available for further investigation. The development of
computational methods to solve the drug response prediction
problem has been expedited through the use of accumulating
data.

Drug response prediction is an important and challenging
problem in both bioinformatics and translational medicine.
Various categories of methods, including kernel-based methods,
network-based methods, regression models, traditional machine
learning and deep learning (DL) models [5–9], have been
developed. To identify optimal methods and provide suggestions

for the improvement of new models, the National Cancer Institute
(NCI) and the Dialogue on Reverse Engineering Assessment
and Methods (DREAM) launched a drug sensitivity prediction
challenge as early as 2014 [5], and several other articles
were later published for benchmarking model performance
[6, 10–13]. The top-tier methodology usually models nonlinear
relationships, utilizes prior biology knowledge and implements
sophisticated preprocessing and feature selection [5, 6]. Deep
learning (DL) methods are gaining popularity due to high
capacity, flexibility and better generalizability across cell line
datasets [11]. However, the evaluation of different DL meth-
ods is relatively lacking compared to other methodological
categories.

In addition to the prediction methodology, other factors related
to prediction performance have been explored: the experimental
variability of drug responses across studies [11], the integration of
multiple data sources [10], the incorporation of biological pathway
or network information [5], pan-cancer or tissue-specific mod-
elling [6], the predictive power of multi-omics or single omics
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data [5, 6], the importance of cell line or drug diversity on model
generalizability [11] and the prediction accuracy for drugs that do
not appear in the training datasets [13]. However, the systematic
evaluation of the predictive ability of preclinical models for clini-
cal patients is insufficient.

Here, we conduct a systematic and comprehensive assess-
ment of representative DL drug response prediction methods,
covering both single-drug learning (SDL) and multi-drug learning
(MDL) paradigms. These methods were evaluated on cancer cell-
lines using nine metrics. In previous studies, prediction models
were only assessed by their overall performance on all drug-cell
line pairs. Here, we also considered the model performance for
each drug. More importantly, the ability of a model to predict
drug response in clinical cohorts was estimated. Based on these
results, we provide constructive suggestions and future develop-
ment directions for the community of scientists interested in this
issue.

Brief overview of deep learning methods
for drug response prediction
There is a wide variety of DL methods for drug response predic-
tion, including SDL or MDL paradigms that are based on whether
drugs are predicted separately or together (Figure 1A and B) [9],
regression or classification models that are based on whether the
output variables are continuous or discrete response values and
models characterized by the DL architectures.

The SDL paradigm is intended to independently predict drug
response for a given drug, which makes a linkage between com-
plex omics data and drug sensitivity measures. The nature of
the drug response of cell lines is nonlinear; thus, DL methods,
such as dense neural networks (DNNs) [14], autoencoders (AEs)
[15] and variational autoencoders (VAEs) [16], which are powerful
mathematical frameworks, have been employed to better capture
nonlinear relationships.

The MDL paradigm digests information from both cell lines
and drugs, which facilitates the integration of multiple drugs and
scales up the training data. MDL models usually consist of three
components: a cell line embedding branch (CEB), which is used to
encode genomic profiles (e.g. expression profiles, mutation status
and copy number variation); a drug embedding branch (DEB),
which is used to encode drug features (e.g. simplified molecular-
input line-entry system (SMILES) strings, molecular fingerprints
and molecular structure graphs [17]); and a prediction module
(PM), which is used to fuse the embedded vectors to predict drug
response. Various architectures have been employed. For CEB,
DNNs [18], convolutional neural networks (CNNs) [19–21], AEs [22]
and attention mechanisms [23] have been used to encode cell line
profiles. Additionally, prior biological knowledges were utilized via
models like visible neural networks (VNNs) [24] and graph neural
networks (GNNs) [25], which better present the features of cell
lines. The architectures of DEB often depend on the format of the
drug features. Molecular fingerprints and descriptors are usually
handled by DNNs [24] and CNNs [19], SMILES strings (defined as
a strings of characters) are addressed with CNNs [20, 23], and
molecular structure graphs are processed by GNNs as a graph
embedding task. With respect to PM, multi-modal fusion is the
key to taking advantage of the complementarity of CEB and DEB.
The late fusion strategy, where the extracted feature vectors from
CEB and DEB are concatenated and fed into a DNN [20–22, 24,
25] or CNN [19, 26], and then transformed into an output neuron
to predict drug response, has been widely adopted. Recently, an
intermediate fusion strategy in the form of contextual attention

has been implemented to boost the interactions of CEB and DEB
[23].

Representative methods for assessments
We first queried PubMed using the keywords ‘drug response +
prediction + deep learning’ and limited the publication date to
those works published after 2019. Then, we manually removed
methods without readily available source codes. To balance com-
prehensiveness and computational cost, we selected the repre-
sentative state-of-the-art methods with various deep learning
architectures. Finally, three MDL methods (DrugCell, PaccMann
and TGSA) and three SDL methods (CRDNN, VAEN and MOLI) were
included in this benchmark analysis (Table 1).

CRDNN is a DNN model that uses transcriptome as input,
the hyperbolic tangent (tanh) as the activation function and the
mean squared error (MSE) as the loss function [14]. Although
its architecture is simple, better performance was achieved
using this model than traditional machine learning methods
when predicting drug response and survival in several clinical
cohorts.

VAEN uses a VAE with a sigmoid activation function to obtain
the embedding of the rank normalized transcriptome data and
then uses an elastic net regression model to predict drug response
[16]. Notably, the VAE loss function is composed of a reconstruc-
tion term (MSE) and a regularization term (Kullback–Leibler diver-
gence) to retain the continuity and completeness in the latent
space [27].

MOLI is a Multi-Omics (transcriptome, mutation and copy
number variations) Late Integration method [15]. It employs three
DNNs with an ReLU activation function to learn latent repre-
sentations from different types of data and then regularizes the
representations by introducing triplet loss, which enforces the
distance between samples with the same labels smaller than
those with different labels. As a classification model, its PM is a
DNN with a sigmoid activation function and binary cross-entropy
loss.

PaccMann takes full advantage of an attention mechanism
to integrate SMILES strings and gene expression [23]. First, gene
attention weights are generated using a softmax layer, and then
gene expression values are filtered to ensure that the most infor-
mative genes are addressed. Second, SMILES strings are filtered
using CNNs with various kernel sizes and then fed into a multi-
head contextual attention layer using the filtered genes as a
context. The so-called multiscale convolutional attentive encoder
is used for the intermediate fusion of gene expression and SMILES
strings as well as the extraction of local and long-range dependen-
cies on drug structures.

DrugCell utilizes a visible neural network (VNN) that models
the hierarchical organization of biological processes to enhance
mechanistic interpretability on the CEB with the tanh activation
function. Morgan fingerprints encoded by DNN are concatenated
with the VNN-encoded latent vectors, and then fed into another
DNN module for regression. Based on the interpretable structure,
this method was validated for learning drug response mecha-
nisms and was even extended for the design of synergistic drug
combinations [24].

TGSA applies twin GNNs to represent cell lines and drugs.
More specifically, a drug is represented as a molecular graph that
takes atoms as nodes and chemical bonds as edges; a cell line
is represented as a gene–gene interaction graph, where nodes
are genes and edges are gene–gene interactions curated from
the STRING database. The graph isomorphism network (GIN)
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Figure 1. Overall performance of two typical deep learning paradigms for drug response prediction. (A and B) Illustration of two paradigms of DL drug
response prediction models: (A) SDL, which constructs one model for each drug, and (B) DL, which builds one parameter-sharing model for multiple
drugs, which generates embeddings of drug and cell line features and fuses them into the prediction module. (C-D) The overall performance evaluated
by 5-fold cross validation using the entire GDSC dataset where (C) depicts the RMSE family metrics and (D) represents the correlation metric family. The
error bars represent the 95% confidence intervals. (E) The runtime varied with the increase of sample size. The time consumed by parameter selection
was taken into account. CRDNN was performed on the CPU servers, while the remaining models were assessed on a GPU server equipped with 32
threads, 376G RAM and Nvidia RTX 2080Ti. (F) The number of parameters assigned to each part of the MDL methods.

and graph attention network (GAT) are used to update the node
features of the drug and cell line graph through the message pass-
ing procedure, respectively. Graph embeddings of drugs and cell
lines undergo a similarity augmentation procedure implemented
using GraphSAGE to fuse information at higher granularity lev-
els [25]. In TGSA, gene expression profiles, mutation and copy

number variations are taken as input; and TGSAEXP, TGSACNV and
TGSAMUT corresponded to the single omics models used in our
research.

We also compared DL methods with the conventional machine
learning methods: support vector regression (SVM), Bayesian ridge
regression (Bayes) and elastic net regression (Enet). The machine
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Table 1. Summary of representative deep learning methods for drug response prediction

Cell line
feature

Cell line
embedding

Drug feature Drug
embedding

Prediction module Loss function Reference

DrugCell M VNN Morgan FP DNN DNN MSE [24]
PaccMann Ea Self-attention SMILES CNN Contextual-attention MSE [23]
TGSA Ea, M, C GAT Molecular graph GIN DNN MSE [25]
CRDNN Ea DNN – – DNN MSE [14]
VAEN Eb VAE – – Elastic Net MSE and MAE [16]
MOLI Ea, M, C Auto-encoder – – DNN Cross entropy

and triplet loss
[15]

E: expression profiles; M: mutation status; C: copy number variation; FP: fingerprint; DNN: dense neural network; CNN: convolutional neural network; VNN:
visible neural network; GAT: graph attention network; VAE: variational autoencoder; GIN: graph isomorphism network; MSE: mean squared error; MAE: mean
absolute error az-score standardization bRank normalization

learning models for each drug were built using the Python pack-
age scikit-learn.

Cancer cell line datasets
The GDSC dataset, which was downloaded from https://www.
cancerrxgene.org/downloads (release 8.2, accessed 1 December
2021), includes multiple omics data from 988 cell lines involving
28 tissue types and 446,146 response readouts from 518 drugs.
Gene expression profiles obtained from the microarray were
RMA-normalized, log2-transformed and standardized accordingly
(Table 1); only non-silent mutations were retained and coded
as 0 for the wild type and 1 for the mutated; gene-level copy
number variations were obtained for the cell line as GISTIC scores
and binarized by assigning 0 for the copy-neutral and 1 for the
deletions or amplifications. Drugs were searched through the
PubChem website to obtain unified CIDs and canonical SMILES
strings. Other molecular representations for drugs, e.g. Morgan
fingerprints (nbits = 2048, radius = 2) and molecular structure
graphs, were generated by the RDKit Python package (http://
www.rdkit.org). Drugs with CIDs and cell lines with all types of
the aforementioned omics data were included in our benchmark
study. The CCLE dataset with 471 cell lines and 24 drugs was
downloaded from https://depmap.org/portal/ccle (2021Q4) and
processed in the same way as the GDSC dataset.

Drug response
The half-maximal inhibitory concentration (IC50) and the area
under the dose–response curve (AUC) are commonly used mea-
sures of drug sensitivity. Although the performance of a prediction
model may differ when using IC50 or AUC, compatible method
comparison results are often obtained using these two metrics
[6]. Therefore, we used IC50 to measure drug sensitivity in our
benchmark work (evaluation using AUC yielded similar results).

For regression models, log transformation and max-min stan-
dardization were performed on the training and test datasets,
respectively. For classification models, the binarization of IC50 for
each drug was performed using the heuristic outlier procedure
with four steps: upsampling IC50 to add samples, estimating the
kernel density, modelling the population of resistant cell lines as
a normal distribution, and evaluating the cumulative distribution
to find the binarization threshold [28].

Variation partitioning [29] was conducted to estimate the por-
tion of variation of IC50 values explained by cell lines or drugs
using the ‘varpart()‘ function from the ‘vegan‘ R package, where
cell line and drug were served as explanatory variables.

Three statistics were calculated to characterize the distribu-
tion of IC50. The standard deviation measures the dispersion

of responses to a drug. The bimodality coefficient depicts the
selective killing activity of the anti-cancer drug [30] and is defined
as:

bimodality coefficientd = g2 + 1

k + 3(n − 1)2/ (n − 2) (n − 3)
, (1)

where n denotes the number of cell lines screened for the given
drug d, g denotes the skewness and k denotes the excess kurtosis
relative to the normal distribution. A higher bimodality coefficient
denotes a distribution that is both strongly skewed (high absolute
value of g) and light-tailed (small value of k).

The density coverage is used to calculate the cumulative dis-
tribution probability on the entire dataset spanning the 10th and
90th percentiles of each drug as follows:

density coveraged = CDF
(
πd

0.9

)
− CDF

(
πd

0.1

)
, (2)

where CDF(·) is the cumulative distribution function of the IC50
of all the drug-cell line pairs and the 10th and 90th percentiles of
the given drug d are denoted as πd

0.1, πd
0.9. A higher density coverage

implies that the distribution of the drug is closer to that of the
entire dataset.

The Mann–Whitney test was used to evaluate whether there
was a significant difference in the above statistics among the
different drug groups.

Evaluation on cancer cell lines
Five-fold cross validation was used for model evaluation on the
GDSC dataset. The data were divided into training, validation and
test sets at a ratio of 3:1:1. Cell lines were stratified to ensure an
even proportion of tissue types in each set. For MDL methods,
the training, validation and test sets contained 140 244, 46 747
and 46 747 drug-cell line pairs, respectively; for SDL methods,
the median sizes of the training, validation and test sets were
540, 179 and 179, respectively. For each prediction method, 30
sets of hyperparameters were selected at random from the grid
of recommended configurations in the original papers. For every
fold, all 30 models were trained and evaluated, and the model
with the highest Pearson correlation coefficient on the validation
dataset was selected as the optimal model. Since each sample was
tested, we can easily obtain the predicted results of all the cell
line-drug pairs by concatenating each test fold. The performance
of the entire dataset and individual drugs can then be measured
based on the evaluation metrics.

The evaluation metrics quantify the performance of a predic-
tive model by comparing the observed values, y = (

y1, y2, . . . , yn
)
,

with the predicted values, ŷ = (
ŷ1, ŷ2, . . . , ŷn

)
, in different aspects.
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We adapted nine metrics from [6] and classified them into two
groups. One group, which we refer to as the RMSE family, was used
to measure the average magnitude of residuals. RMSE is the root
mean squared error between the ground-truth and predicted val-
ues among all cell lines; L_RMSE, R_RMSE and LR_RMSE only con-
sider only sensitive, only resistant and both sensitive and resistant
cell lines, respectively [6]. In the RMSE family, a lower value
indicates better performance. The other group, which we refer to
as the correlation metric family, was used to depict the coherence
between the observed and predicted values and includes the Pear-
son correlation coefficient (PCC), Spearman’s rank correlation
coefficient (SCC), normalized discounted cumulative gain (NDCG)
[31], probabilistic c-index (PC)/normalized weighted probabilistic
c-index (NWPC) [5], and area under the receiver operator charac-
teristic curve (ROC_AUC). In the correlation metric family, a higher
value indicates better performance. In particular, PC/NWPC and
NDCG are used to evaluate the rank coherence between the
predicted and observed values. NDCG measures the ability to rank
highly relevant results (i.e. sensitive cell lines) at the top of the list:

DCG
(
y, ŷ

) =
∑n

i=1

2−yi − 1
log2

(
r
(
ŷi

) + 1
) ,

NDCG
(
y, ŷ

) = DCG
(
y, ŷ

)
DCG

(
y, y

) (3)

where r
(
ŷi

)
is the position of ŷi on the sorted ŷin ascending order.

More sensitive cell lines have smaller y and lower r
(
ŷi

)
, thus

a higher NDCG indicates that the model can identify the most
sensitive cell lines.

PC is used to evaluate the rank coherence between the pre-
dicted and observed values, and is defined as the ratio of the
concordant pairs to all possible combinations:

PC
(
y, r

(
ŷ
)) = 2

n (n − 1)

∑
i<j

hp
(
yi, yj, r

(
ŷi

)
, r

(
ŷj

)
, σ

(
y
))

(4)

hp
(
yi, yj, r

(
ŷi

)
, r

(
ŷj

)
, σ

(
y
)) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
1 + erf

(
yi−yj

2σ(y)

))
, r

(
ŷi

)
> r

(
ŷj

)
;

0.5, r
(
ŷi

) = r
(
ŷj

)
;

1
2

(
1 + erf

(
yj−yi

2σ(y)

))
, r

(
ŷi

)
< r

(
ŷj

)

erf(a) = 2√
π

∫ a

0
e−t2

dt .

NWPC is the normalized weighted PC when considering all
drugs:

WPC(M) =
∑

d wd· PCd∑
d wd

,

NWPC = WPC − WPCmin

WPC − WPCmax
, (5)

where the drug weight wd is determined as wd = (
PC∗

d − μd
)
/σd.

A random ranking of n items is generated for the given drug
d, Rd and PCd = PC

(
y, Rd

)
is computed; the above process is

repeated 1000 times to produce an empirical null distribution with
a median and standard deviation

(
μd, σd

)
and the gold standard

PC∗
d = PC

(
y, r(y)

)
is computed.

Since MOLI is a classification model, it was only evaluated by
ROC_AUC to measure the ability of the model to discriminate
between sensitive and resistant cell lines. The other eight metrics
were used to evaluate regression models under two settings:

pooling all drugs together and separately computing for each
drug.

The five-fold cross-validation was randomly repeated ten
times, 50 values were obtained for each evaluation metric, and
then the standard deviations and 95% confidence intervals were
calculated for statistical evaluation of the DL methods. Due to
the high computational cost of training CRDNN models, 10 drugs
were randomly selected to represent the confidence intervals of
all drugs in CRDNN.

Ablation study
An ablation study was performed to estimate the importance of
CEB and DEB via paralyzing each of them. More specifically, each
element of molecular profiles was set to zero (CellZeros), and
the identical SMILES string (i.e. CCCCCCCCCCCC) replaced the
original (DrugZeros) to disable CEB and DEB, respectively.

Computation evaluation of the runtime
CRDNN was performed on the CPU servers with 32 threads and
128G RAM. The rest were performed on a GPU server equipped
with 32 threads, 376G RAM and Nvidia RTX 2080Ti. The runtime
of each method was captured using the time function available in
the R or Python environments.

Evaluation on clinical cohorts
The Cancer Genome Atlas (TCGA) provides extensive molecular
data together with the clinical information of patients spanning
dozens of cancer types. The drug treatment information from
TCGA was curated by Ding et al. [32]. We selected 16 drugs with
sample sizes larger than 10 (Supplementary Table S2): cisplatin,
paclitaxel, gemcitabine, 5-fluorouracil, temozolomide, docetaxel,
doxorubicin, etoposide, bleomycin, pemetrexed, vinorelbine,
tamoxifen, bicalutamide, sorafenib, vinblastine and methotrex-
ate. To avoid the effects of multiple rounds of treatments,
patients with responses to multiple drugs were excluded. The
corresponding omics data were downloaded via the GDC portal
(https://portal.gdc.cancer.gov/). RNA-seq gene expression data
were converted from counts to TPM (transcripts per million) and
log-transformed. ComBat [33] was used to remove batch effects
between cell line and patient datasets. The ‘standard ComBat’
pooled gene expression matrix of two dataset and adjusted
the technical artifacts using an empirical Bayes approach; the
‘reference-batch ComBat’ took GDSC cell line dataset as baseline
to adjust patient data, which do not see the patient data before
model training [34]. Mutations and copy number variations in
TCGA were transformed to numerical vectors in the same manner
as for cancer cell lines. An additional clinical trial containing
169 relapsed myeloma patients treated with bortezomib was
collected to validate DL methods using the same procedure as
TCGA dataset [35].

Hyperparameters for each model were determined by the
above 5-fold cross validation on cancer cell lines. The optimal
models were trained using the whole GDSC dataset and tested
on the patient datasets. In the clinical cohorts, patients were
categorized as follows: progressive disease (PD), stable disease
(SD), partial response (PR) and complete response (CR). In our
study, PD and SD patients were treated as non-responders,
while PR and CR patients were treated as responders. Next,
the discrimination of each prediction model between the non-
responders and responders was checked by three metrics (effect
size, P-value and ROC_AUC). The effect size was calculated as
the mean difference between the predicted IC50 of responders
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and non-responders; the P-value was estimated via the Mann–
Whitney test with the alternative hypothesis that responders have
a lower mean IC50; ROC_AUC was computed on the predicted
IC50 of patients to aggregate the performance across various
thresholds.

Results
Overall performance of the prediction methods
We selected six typical and state-of-the-art methods of drug
response prediction, including three SDL methods (CRDNN, VAEN,
MOLI) and three MDL methods (DrugCell, PaccMann, TGSA).
Detailed descriptions of each model are listed in Table 1. These
methods were assessed on the GDSC dataset, which contains
233 738 drug sensitivity readouts involving 282 drugs and 966 cell
lines.

Prediction accuracy was evaluated by cross validation. By pool-
ing each test fold together, eight evaluation metrics were cal-
culated among all cell-drug pairs in the GDSC dataset for the
eight regression models including single omics variants of TGSA.
The results of RMSE and its variants are shown in Figure 1C. The
RMSEs of most models except PaccMann were below 0.15. If only
sensitive and/or resistant cell lines were considered, the error
slightly increased (L_RMSE, R_RMSE and LR_RMSE), which indi-
cates that it is difficult to predict the extreme and rare responses.
Regarding the correlation metrics shown in Figure 1D, PCC and
SCC were used to evaluate linear and monotonic relationships
based on raw and ranked values, respectively. Relatively poor
performance on these two metrics, with a PCC of 0.74 and an SCC
of 0.69, was observed using PaccMann, while values over 0.8 were
obtained using the other models. DrugCell, TGSA, CRDNN and
VAEN performed fairly well on all metrics. Additionally, the com-
parison between single-omics and multi-omics input on TGSA
attested that gene expression was the most informative and
that the integration of multi-omics data slightly enhanced the
prediction performance (Figure 1C and D).

SDL models had a linear time complexity as the number of
drugs increased, while MDL models tended to have a sublinear
time cost due to the shared parameters among drugs (Figure 1E).
VAEN only utilizes the DL strategy to obtain low-dimensional
representations of expression profiles that can be quickly pro-
cessed in elastic net; thus, it is more scalable than other SDL
models. DrugCell was slower than the other MDL models due
to the larger number of parameters. With closer scrutiny on the
architecture of MDL models (Figure 1F), it is not surprising to find
that more parameters are assigned to CEB compared with DEB
and PM, which are subject to the length and complexity of cell
line features. Considering the overall performance and time cost,
TGSA is more recommended.

Previous publications have shown that deep learning methods
have certain advantages compared with conventional machine
learning methods in different scenarios of drug response predic-
tion scenarios: within cell line datasets, cross cell line datasets
and transfer to clinical cohorts [11, 13, 14]. To explore this, we com-
pared the six DL methods with SVM, Bayes and Enet. Most of the
DL models yielded better performance than those machine learn-
ing methods on all eight metrics (Supplementary Table S1). Data
sources are another focus of discussion with respect to drug sen-
sitivity estimation. We compared the overall performance of deep
learning methods on another large cancer cell line dataset, CCLE.
The performance of each DL model fluctuates between the GDSC
and CCLE datasets, but the relative level of performance among
the different models was consistent (Supplementary Figure S1).

Such consistency of method comparison among different data
sources have also been observed in a previous report [11].

Relative contributions of cell lines and drugs to
MDL models
The measure of drug response is determined by both the cell line
and drug, but the relative importance of these two factors is not
fully understood. Therefore, we assessed the effects of the cell
line and drug in terms of the ground-truth distribution and the
contribution of different components of MDL methods.

Intuitively, there was a larger disparity in each drug’s IC50 dis-
tribution than that of each cell line (Figure 2A). Then, the portions
of variance of the response explained by cell lines or drugs were
estimated by variation partitioning analysis. As Figure 2B shows,
drugs accounted for 73.6% of the variance in IC50 values, while
cell lines accounted for only 5.9%.

To understand the relative contributions of CEB and DEB to
MDL methods, an ablation study was developed to evaluate the
performance of a model in the CellZeros and DrugZeros settings,
where models were blind to different cell lines and drugs, respec-
tively. Generally, the overall performance decreased significantly
on all three MDL methods in the DrugZeros setting, with much
higher RMSE and lower SCC values, while CellZeros had minimal
impact on the overall performance, indicating that DEB has a
greater contribution (Figure 2C and D). This finding is consistent
with the result of variation partitioning; i.e. the variance between
cell lines is too subtle to be captured by MDL methods; therefore,
it is crucial to improve CEB to better distinguish the differences
among cell lines. Furthermore, we found that the prediction per-
formance significantly decreased when calculating the RMSE and
SCC values for each drug using CellZeros (Figure 2E and F). This
finding suggests that the evaluation on single-drug level could
better measure the influence of cell features compared to on all
drugs together.

Considering the large difference among drugs and the outcome
of the ablation study, a null model was introduced to represent the
extreme scenario, in which IC50 variation was only determined by
the drug, which means all cell lines have the same IC50 values for
the given drug. Surprisingly, a relatively good overall performance
(PCC 0.83, SCC 0.86 and RMSE 1.36) was obtained using the null
model, although it only represents the variability among drugs
(Figure 2G). Taken together, these results highlight the necessity
of a separate evaluation of each drug for method comparison.

Evaluation on single-drug level
A common application scenario in precision medicine is the
estimation of the response of a drug on different tumor
samples; thus, we evaluated the performance of DL methods
for each drug. The pipeline of single-drug level assessment is
shown in Supplementary Figure S2. Nine evaluation metrics
were not independent, and their associations were measured
by the Spearman’s rank correlation coefficient (Figure 3A-C,
Supplementary Figure S3). As expected, the RMSE family (RMSE,
L_RMSE, R_RMSE and LR_RMSE) showed high internal consistency,
which was similarly observed in the correlation metric family
(SCC, PCC, ROC_AUC, PC and NDCG). However, metrics from
the RMSE family were poorly correlated with those from the
correlation metric family. MSE (the square of RMSE) is a commonly
used loss function in deep learning models (Table 1); however, but
minimizing MSE cannot guarantee higher score on the correlation
metrics.

Next, we compared the performance of DL models and the
null model using nine evaluation metrics on single-drug level
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Figure 2. Variation partitioning and an ablation study assess the effects of drugs and cell lines on the prediction performance. (A) The distribution
of IC50 values for the representative cell lines or drugs. (B) The proportion of IC50 variance explained by drugs and cell lines. (C-F) Delineation of the
impact of drug and cell line embedding branches assessed in the ablation study. (C-D) and (E-F) illustrate the overall and single-drug level performance,
respectively. Asterisks indicate the level of statistical significance by the Mann–Whitney test: ∗ P < 0.05, ∗∗ P < 0.01. (G) The scatter plot depicts the
correlation between the null model and observed data.

(Figure 3D-F, Supplementary Figure S4). Similar to the overall
performance, TGSA outperformed the other models when
evaluating for each drug. The ROC_AUC value of MOLI oscillated
around 0.5, indicating that the predictions resembled random
guesses, which might result from information loss during the
discretization of IC50 values when treated it as a classification
problem.

So far, DrugCell, TGSA, CRDNN and VAEN have performed
relatively well on both overall and single-drug level assessments.
The leading model, TGSA, achieved an overall RMSE of 1.07 and

an SCC of 0.89; the RMSE values of each drug ranged from 0.50 to
2.66 with a median of 1.00, and the SCC values ranged from 0.18
to 0.83 with a median of 0.57.

Predictability of individual drugs
Based on the above results (Figure 3), the ability to correctly
predict drug sensitivity varied among drugs. SCC between
the observed and predicted IC50 values was used to measure
the predictability of each drug. Then, we tested whether the
predictability of the drugs was consistent among the different
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Figure 3. The prediction performance of DL methods for the response of each drug. (A-C) The consistency of nine evaluation metrics on TGSA (A),
DrugCell (B), CRDNN (C) and others (Supplementary Figure S1). Nine metrics were classified them into two families: the RMSE family (RMSE, L_RMSE,
R_RMSE, LR_RMSE) and the correlation metric family (PCC, SCC, NDCG, PC, ROC_AUC). Intra-and inter-metric-family consistency are defined as the
Spearman’s rank correlation coefficient within the metric family and across metric families, respectively. Intra-metric-family consistency is significantly
higher than inter-metric-family consistency (Mann–Whitney test, ∗∗ P < 0.01). (D-F) The single-drug level performance of nine DL models and null model
was assessed by RMSE (D), SCC (E), ROC_AUC (F) and other metrics (Supplementary Figure S2). The classification model MOLI was only evaluated by
ROC_AUC.

models. The correlation of predictability between any two
methods was significantly positive (Figure 4A), indicating that
there are drugs that could be well predicted regardless of the
methods and also drugs that are difficult to correctly predict.
Models from the same learning paradigm showed significantly
higher consistency than those from different learning paradigms
(Figure 4A). It is implied that the predictability might be bound by
the learning paradigm.

Furthermore, drugs were classified into four groups (Figure 4B):
predictable drugs, with SCC values ranked in the top 50% of all
methods (P group); unpredictable drugs with SCC values ranked in
the bottom 50% of all methods (U group); difficult to predict using
mutation status but easy to predict using expression profiles, with
SCC values ranked in the bottom 50% for DrugCell and TGSAMUT

while ranked top 50% for TGSAEXP, PaccMann, CRDNN and VAEN
(M group); and the remaining drugs (O group).

To comprehensively characterize factors that influence drug
predictability, we defined three statistical measurements and
compared them in different drug groups (Figure 4D-F). The stan-
dard deviation indicates the dispersion of IC50 among cancer
cell lines within the given drug; the bimodality coefficient indi-
cates the selectivity of the killing activity of each drug; and the
density coverage reflects the consistency of the IC50 distribution

between the given drug and the entire dataset. All these statistics
significantly differed between the P and U groups, indicating that
drugs that are easier to predict have in high variance, selective
killing activity and high consistency with the overall distribution.

Next, pathway enrichment analysis based on the drug target
pathway was conducted to investigate the relationship between
the predictability and mechanism of the given drug using Fisher’s
exact test. As Figure 4C shows, drugs targeting at ERK MAPK
signaling were enriched in the M group, DNA replication and
chromatin histone acetylation were enriched in the P group, and
IGF1R signaling was enriched in the U group.

In summary, the predictability of individual drugs might be
bound by the learning paradigm, IC50 distribution and drug mech-
anism of action.

Transferability on patients
Research on preclinical models is aimed at facilitating the clinical
applications. To further evaluate the inductive transferability
on TCGA patients, batch effects between cell line and patient
datasets were removed by the standard ComBat, and then
DL methods trained from all cancer cell lines were applied
to predict patients’ response of 16 drugs (Supplementary Table S2,
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Figure 4. Predictability of individual drugs. (A) The consistency of DL methods. The colors represent the SCC values between any two methods. Intra-
paradigm consistency was significantly higher than inter-paradigm consistency (Mann–Whitney test, ∗ P < 0.05). (B) The heatmap of SCC values shows
the different predictability among drugs. Drugs were categorized into four groups. M: drugs that were difficult to predict using mutation status but easy
to predict by expression profiles, P: predictable drugs, U: unpredictable drugs, O: others. (C) Pathway enrichment was applied to assess the potential
association between drug predictability and mechanism of action (Fisher’s exact test, ∗ P < 0.05). (D-F) depict the difference between the IC50 distribution
of the P and U groups: standard deviation (D), bimodality coefficient (E) and density coverage (F) (Mann–Whitney test, ∗∗ P < 0.01).

Supplementary Figure S5). Regarding the effect size and P-value of
predicted IC50 values between responders and non-responders,
for some drugs, adequate performance (effect size >0, P-value
<0.05) was obtained with some models (Figure 5B): PaccMann
for doxorubicin; TGSA for cisplatin, etoposide and tamoxifen;
TGSAEXP for bicalutamide, cisplatin and sorafenib; CRDNN for
cisplatin, doxorubicin, etoposide, gemcitabine and vinorelbine.
This implies that the performance of different models on different
drugs may vary greatly as a result of the huge discrepancy
between cell lines and patients caused by experimental bias,
biological contexts and so on. Compared with other models,
CRDNN surpassed the statistical significance threshold on 5 out of
16 drugs in the TCGA dataset, indicating that the end-to-end SDL
model might be more powerful for discriminating tumor samples
(Figure 5B). Unexpectedly, more than half of the ROC_AUC values
of DrugCell and TGSAMUT were under 0.5, which means these
models tended to mistake the responders and non-responders
(Figure 5A). Given that these two models only used somatic
mutation profiles, we compared the total number of mutations
for cell lines and patients. As seen in Supplementary Figure S6,
TCGA patients carried less mutations than GDSC cell lines,
which may result from different mutation calling pipelines and

control samples. Therefore, consistent data preprocessing and
normalization are important when transferring models to other
datasets.

Among the 16 drugs mentioned above, a statistically significant
difference between response and non-response patients was
observed for 9 drugs, including etoposide and cisplatin, while the
predicted responses were undistinguishable for the other 7 drugs
regardless of the methods used (Figure 5B). This phenomenon
occurs even using the latest transfer learning technologies that
were published recently [36–38] (Supplementary Table S3). There
are a number of possible reasons for this outcome, such as
differences between cell lines and patients, the lack of drug
sensitivity related features and the reduction of statistical power
due to small sample sizes. To this end, we built DNN classifiers
directly from the expression profiles of patients instead of cell
lines. Eight drugs with sample sizes larger than 80 were chosen,
and the performance was measured by ROC_AUC (Figure 5C).
Patient response to etoposide and cisplatin were well predicted
by both cell line- and patient-trained models, while patient
response to 5-fluorouracil and gemcitabine were difficult to
predict whether using cell line- or patient-trained models. Better
predictability for temozolomide, paclitaxel and docetaxel was
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Figure 5. Assessment of model transferability on clinical cohorts. (A) and (B) depict the performance of 16 drugs trained on GDSC cancer cell lines and
tested on TCGA patients. (A) The heatmap plots of the ROC_AUC values for each drug. The barplots on the upper and right panels depict the number
of methods and drugs with the ROC_AUC values larger than 0.5, respectively. (B) The performance in terms of P-value and effect-size. The bar plots on
the upper and right panels depict the number of methods and drugs with an effect size larger than 0 and P-value small than 0.05, respectively. (C) The
boxplot shows the ROC_AUC values for each drug assessed by five-fold cross validation for models trained directly on patient data. (D) The volcano plot
shows the prediction results of temozolomide using pan-cancer cell lines or cell lines of the central nervous system.

achieved using patient-trained models than by cell line-trained
models; in particular, the mean ROC_AUC of temozolomide was
above 0.8 for the patient-trained model. We noted that patients
treated with temozolomide in TCGA mainly suffer brain tumor
(Supplementary Figure S5). Since temozolomide is the leading
compound for the treatment of brain cancer in clinical practice
[39], we suppose that models built for specific tissue types might
be more suitable than pan-cancer model. As shown in the volcano
plot (Figure 5D), statistical significance was improved for some
models when trained only on the cell lines cultured from central
nervous system tumors, especially PaccMann, which yielded
statistically significant results.

To improve the robustness of method comparison, another
patient cohort treated with bortezomib was used to evaluate
transferability of DL methods [35]. CRDNN was still the best
model on this dataset. The predicted sensitivity of bortezomib
by CRDNN are significantly different between responders and
non-responders (P = 0.047). TGSA and PaccMann can distinguish
responders and non-responders to some extent (P-values are 0.06
and 0.07, respectively).

Although batch correction by pooling training and validation
datasets together is common when applying prediction models
to external datasets [14, 40], there is potential risk of data

leak. Another strategy called ‘reference-batch ComBat’ was
used [34], which do not see the patient data before model
training and there is no risk of data leak. The new results
are largely consistent with previous results from the ‘standard
ComBat’ (Supplementary Figure S7). CRDNN maintains the
best performance no matter using ‘reference-batch ComBat’
or ‘standard ComBat’. The number of drugs with significant
difference between responders and non-responders decrease
from 9 to 7. The slight performance drop may be due to no data
leak of the stricter ‘reference-batch ComBat’.

In summary, deep learning models trained from cancer cell
lines hold promise for transferring to clinical patients, but the
accuracy varies based on the drugs and prediction methods uti-
lized. New approaches are needed to address the challenge from
preclinical models to clinical applications.

Discussions
In this study, we systematically assessed DL methods for drug
response prediction, including three SDL methods and three MDL
methods, from various perspectives: overall and drug level per-
formance, computational efficiency and transferability on TCGA
clinical data (Table 2). Generally, MDL models achieved promising
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Table 2. Summary of benchmark results: computational efficiency, method performance on cell lines and patients

DrugCell PaccMann TGSA CRDNN VAEN MOLI

Computational efficiency ∗∗ ∗∗∗∗ ∗∗∗∗∗ ∗ ∗∗∗ ∗

Accuracy ∗∗∗∗∗ ∗∗ ∗∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗

TCGA transferability ∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗

More asterisks indicate better on the addressed item.

performance on cancer cell lines with less time consumption,
and could be used to predict new drugs that were unseen in
the training datasets. However, current MDL models require the
molecular representation of drugs; thus, they cannot be directly
used for monoclonal antibody drugs. The SDL model is very slow
when predicting a large number of drugs. However, in regard to
clinical applications that estimate the response of a drug, the
performance of CRDNN is relatively robust. Moreover, our study
provides some directions for the development of more effective
methods for drug response prediction.

First, there are large differences among drugs in terms of
their IC50 values. According to the result of variation partition-
ing, 73.6% of the true IC50 labels is explained by the drug, and
intuitively, it is difficult to learn the discrepancy among cell
lines. Meanwhile, the ablation study demonstrated DEB that con-
tributed more to the final performance of MDL models. Therefore,
how to balance the information strengths from CEB and DEB
through PM to enforce the ability to distinguish different cell
lines may be a key point. Several concepts from intermediate
fusion methods, such as attention-based and bilinear pooling-
based fusion [41], might be beneficial.

Second, graph embedding of cell lines beyond the Euclidean
space might enhance the expressive power of CEB. DrugCell
directly mapped the neurons of a deep neural network into
the Gene Ontology Biological Process hierarchy and constrained
that the information only flowed from child subsystems to
parent systems; TGSA adopted a typical message passing neural
networks framework to gather information from neighbors. These
two models utilized biomedical graphs to represent cell line
status, breaking new ground for drug response prediction. Of note,
graphs of different cell lines shared the same topology structure in
either of the above methods. If variable-structure graphs are used
for representing cell lines, the model may learn more information.

Third, the reproducibility and transferability of prediction
methods are important for clinical applications. Data prepro-
cessing, such as the normalization of omics data, tissue-specific
modelling, and the computational alignment of patients and
cell lines, should be considered for the predictive improvement.
In previous DL methods, batch effects were simply removed
before model construction, but researchers now make forays
into transductive learning. Ma et al. designed a few-shot learning
model aiming to identify applicable input features on both cell
lines and patients through its ‘pretraining’ and ‘few-shot learning’
two-phase training process [42]; Velodrome adapted the cell
line and patient domain by the object function, combining a
supervised loss for accuracy, an alignment loss for generalization
and a consistency loss for invariant latent space [38]. New
transfer learning technologies will bring a brighter future for
the prediction of clinical drug response.

Finally, single-cell sequencing makes it possible to explore
the response of cell subpopulations. Although it is difficult to
directly apply the existing drug sensitivity prediction methods to
single-cell data, a few studies have already started to explore this
topic. They predicted drug responses by generating a ‘pseudo-
bulk’ expression profile from single-cells [43] or developed

drug combinations to target drug-tolerant cell subpopulations
[44]. In the future, better approaches to address single-cell
drug responses may be developed under new computational
frameworks such as multi-instance learning [45].

Key Points

• Representative DL models for drug response prediction
were systematically assessed in terms of computational
consumption, prediction performance and transferabil-
ity on clinical cohorts. On large-scale cell line data,
TGSA, which has a low time cost and high accuracy,
is recommended; while for single-drug applications in
clinical scenarios, CRDNN shows better performance.

• Variation partitioning and ablation studies revealed that
it is more difficult to capture the differences among cell
lines. Improved architectures such as graph embedding
utilizing biomedical prior knowledge are important to
represent cell lines for personalized response prediction.

• It is a challenging task to transfer drug response predic-
tion models trained by cell line data to patients due to
discrepancy in biology context, experimental conditions
and other factors. New transfer learning techniques are
urgently needed for clinical applications.

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bib. The codes and instruction for implementing and
comparing DL methods are available at https://github.com/
LihongLab/Suppl-data-Benchmark. The data used for training
andvalidating the drug sensitivity prediction models are available
at https://zenodo.org/record/7264573#.Y16Ed3ZByUl.
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